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LETTER TO THE EDITOR

Monte Carlo simulations of intrinsically pinned vortices in
layered superconductors

Eric Bonabeau†‡§ and Pascal Lederer‡‖
† Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
‡ Laboratoire de Physique des solides, Bâtiment 510, Université Paris-Sud, 91400 Orsay, France

Received 31 July 1997

Abstract. Monte Carlo simulations of a lattice London model have been performed to
investigate the thermodynamic properties of a vortex lattice, intrinsically pinned by the layered
structure of a three-dimensional type-II superconductor. Two successive transitions, evidenced
by measurements of the structure factor, are observed: a low-temperature transition that results
from the melting of the flux line lattice into a smectic phase where flux lines are confined
betweenab-planes, and a high-temperature transition to a vortex liquid phase.

When a sufficiently strong magnetic field is applied perpendicular to thec-axis of a layered
high-temperature superconductor, such as YBCO or BSCCO, flux lines can penetrate the
material and become ‘trapped’ between twoab-layers. This is due to the modulation of
the superconducting order parameter along thec-axis which induces a periodic pinning
potential; this potential localizes vortices between layers at low temperaturesT [1]. In
order for such a pinning mechanism to be effective, vortices should run parallel to, or at a
small angle with, theab-planes [2]. One question of interest is whether or not there exists
a smectic phase [3, 4] where layers would be decoupled. If there now seems to be some
agreement about the low-field case, where it has been argued quite convincingly by Mikheev
and Kolomeisky [5] that no such phase can exist, the problem remains unsettled as regards
the high-field case because interactions among vortices are hard to evaluate (because of the
compression modulus due to entropic repulsion). Efetov [6] suggested that there might be
a decoupling transition for fieldsH > H ∗ = (80/d3), whered is the interlayer distance
and3 = dγ−1 is the Josephson penetration length,γ 2 = λ2

ab/λ
2
c = mab/mc being the

superpair effective mass ratio. Korshunov and Larkin [7] suggested that the corresponding
decoupling temperature can only be greater than the superconducting transition temperature
and that therefore no smectic phase can be observed; they based their discussion on the
Lawrence–Doniach model and obtained a lower bound for the decoupling temperature within
the Coulomb gas formalism. On the other hand, the renormalization group arguments of
Mikheev and Kolomeisky [5], when generalized to higher densities of vortices, suggest
the possible existence of a finiteT decoupling transition [4]. In this letter, we study the
behaviour of a parallel field vortex system in high magnetic fields by means of Monte
Carlo simulations of an anisotropic lattice London model [8]. Our simulations suggest the
existence of two successive transitions, one at lowT from a solid vortex lattice to a smectic
phase with a loss of correlations among vortices in neighbouring planes and long-range
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Figure 1. Four plaquettes and two-segment vortex line parallel to theab-planes; circles are
lattice sites (i.e. plaquette centres).

vortex-density correlations along thec-axis, and another one at higherT from the smectic
phase to a regular 3D liquid phase.

Simulations are performed on a cubic lattice, the unit cell of which is of sized, which
we take to be equal to the bare correlation lengthξ . Vortex lines are constructed from
finite elementseµ, where|eµ| = d andµ = 1, 2, 3, located at the centre of each cell. The
vorticity qjµ = 0, ±1, ±2, . . . indicates the number of flux quanta carried by cellj in
the µ-direction. Solving the lattice London equation without disorder, and with periodic
conditions in all directions [8], yields the energyE = ∑i,j

∑3
µ=1G(ri − rj )qµ(ri)qµ(rj ).

In this expression, the anisotropic couplingsG(ri − rj ) are defined through their Fourier
transforms

G3(p) = 4π2J (κ2+ λ−2
3 d2)

(κ2+ λ−2
1 d2)(κ2

1 + κ2
2 + γ 2κ2

3 + λ−2
3 d2)

and

G1(p) = G2(p) = 4π2(γ 2J )

(κ2
1 + κ2

2 + γ 2κ2
3 + λ−2

3 d2)

where κµ = 2 sin(pµd/2), κ2 = ∑
µ=1,2,3 κ

2
µ, λ1 = λ2 (respectively, λ3) is the

penetration depth for fields perpendicular (respectively, parallel) to theab-planes and
J = φ2

0dγ
2/32π3λ2

ab sets the energy scale. In the following,kBT will be defined in units
of J . We use a finite penetration depthλ1 such thatd/λ1 = 0.1, and moderate anisotropy
values given byγ 2 = 1, 2, 10, 20.

Simulations start with a fixed numbernl of straight vortex lines along the 2-direction
(||ab), arranged in an approximate anisotropic (Abrikosov) triangular lattice (see in figure 1
the organization of a plaquette with two vortex segments||ab). New configurations,
generated by adding a randomly selected elementary loop of unit vorticity at a randomly
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Figure 2. (1,3)-plane structure factorS(n,m) for the q2 elements atT = 0.2 J < T1 = 0.35 J
(with γ 2 = 10 andB ≈ 0.13 Bc2).

chosen site of non-zero vorticity, are accepted or rejected according to a standard Metropolis
procedure. One MC step corresponds toV such elementary trials, withV = L1L2L3,
whereLµ is the linear size of the lattice in theµ-direction. The update procedure conserves
both the local vorticity and the total magnetic inductionBµ = (φ0d/V )

∑
j qµ(rj ). In

what follows, L1 = L2 = L3 ≡ L, B1 = B2 = 0 andB2 = φ0nL/L
2. Spontaneous

nucleations and subsequent fluctuations of closed loops are neglected. The normalized
(1,3)-plane structure factorS(k) = (nlL)−1〈|∑j q2(rj )eik·rj |2〉 for theq2 elements, withk =
(k1, 0, k3) = 2π/L(n−(L/2), 0, m−(L/2)) (n, m = 0, 1, . . . , L||), was measured during
the simulations, discarding the first 10 000 MC steps used to reach thermal equilibrium.〈. . .〉
denotes thermal averaging. Simulation were run for 20 000 MC steps withnl = 120 vortices
in a 32× 15× 30 lattice.

Two successive transitions can be observed: (i) A solid–smectic transition atT = T1,
characterized by the disappearance of the Bragg peaks of the solid triangular lattice’s
reciprocal lattice, which are replaced by the Bragg ‘planes’ expected in the absence of
correlations between flux lines in neighbouring layers and a solid-like modulation of the
vortex density along thec-axis. (ii) A smectic–3D liquid transition, atT = T2. At T2, Bragg
peaks completely disappear to yield a characteristic liquid structure factor. Figures 2, 3 and
4 show the (1,3)-plane structure factor for theq2 elements at fixed anisotropyγ 2 = 10
and magnetic fieldB ≈ 0.13 Bc2, at T < T1 (figure 2), T1 < T < T2 (figure 3) and
T > T2 (figure 4). Figure 5 representsS(n = 2, m = 15) (a wavevector that belongs to
the Bragg plane of the smectic phase) andS(n = 2, m = 7) (a wavevector which is a
Bragg peak of the solid triangular lattice’s reciprocal lattice, but that does not belong to
the Bragg plane of the smectic phase) as a function ofT/J : T1 (≈0.35) andT2 (≈3.3)
are clearly seen. These results therefore suggest the existence of an intermediate smectic
phase with decoupled layers at large field, even at moderate anisotropy. It is not possible
to make any conclusions about the order of these transitions from the simulations. Figure 6
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Figure 3. S(n,m) atT1 = 0.35J < T = 1.8 J < T2 = 3.3 J (with γ 2 = 10 andB ≈ 0.13Bc2).

Figure 4. S(n,m) at T = 3.6 J > T2 = 3.3 J (with γ 2 = 10 andB ≈ 0.13 Bc2).

represents the two transition temperaturesT1 andT2 as a function of the anisotropy factor;
the temperature range of the smectic phase decreases to 0 as the system becomes isotropic.

In conclusion, we have shown by means of Monte Carlo simulations the existence
of a decoupling (3D solid→ 3D smectic) transition in a model type-II superconductor
(anisotropic lattice London model), when a large magnetic field is applied parallel to the
layers, as suggested by Efetov [6]. This result is also relevant to 2D bosons in a periodic
potential, and suggests the existence of two transitions. Our thermodynamic simulations
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Figure 5. S(2, 15) andS(2, 7) (average over ten simulations of 2× 105 MC steps each) as a
function of T/J for γ 2 = 10 andB ≈ 0.13 Bc2.

Figure 6. Transition temperaturesT1 andT2 as a function of the anisotropy factorγ 2.

will be complemented by more ‘dynamic’ Monte Carlo simulations where the response
of the system to an applied current along thec-axis is studied; such simulations will
make it possible to compare our results with other theoretical and experimental results
(e.g. [3, 9, 10, 11]).

We thank K van der Beek, G Carneiro, D Feinberg, T Giamarchi, A Kapitulnik, N B Kopnin,
P Le Doussal, T Nattermann and V M Vinokur for fruitful discussions. EB is supported by
the Interval Research Fellowship at the Santa Fe Institute.
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